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Systems of differential equations with discontinuous right-hand sides are considered, specifically investigating periodic solutions 
which simultaneously intersect two or more surfaces of discontinuity. It is shown that the Poincar6 mapping along phase trajectories 
of the system in the neighbourhood of a fixed point, corresponding to periodic motion, is in general piecewise-differentiable: 
this neighbourhood divides into several sectors in which the Jacobians are different. For such mappings, theorems of stability in 
the first approximation [1] are not applicable, and one has to devise new stability criteria. Several necessary conditions for stability 
are obtained, as well as sufficient conditions. The results are used to investigate symmetric modes of motion of a vibro-impact 
system with two impact pairs. © 1999 Elsevier Science Ltd. All fights reserved. 

The method of investigating stability in the first approximation was previously applied to discontinuous 
systems for solutions that intersect one surface of discontinuity [2]. It turned out that under such 
conditions the Poincar6 mapping is differentiable, so that Lyapunov's theorems could be used. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Liuearization is one of the most effective approaches to investigating the stability of periodic motions 
of dynamical systems. The procedure consists of the following two steps: 

1. Construction and solution of variational equations in the neighbourhood of the solution being 
investigated. 

2. Veritieation of the stability conditions. 
Let x*(t) be a x-periodic solution of the system 

i=F(x, t), x, FeR n (1.1) 

where the right-hand side is 2n-periodic in t (the period x of the solution is a multiple of 2n). 
If the function F is continuously differentiable in some neighbourhood of the trajectory x*(t), one 

can use the Poincar6-Lyapunov theory. The fundamental solution matrix Y(t0, t) is defined by the 
equation 

¢~(t o, t)=Fx(x'(t), t)Y(to, t), Y(to, to)=En (1.2) 

where Fx is the Jacobian. The sufficient condition for stability is that all the eigenvalues of the monodromy 
matrix Y(t0, to + x) (that is, the Floquet multipliers) lie inside the unit circle in the complex plane; the 
necessary condition is that they lie either inside or on the circle [1]. 

Note that a given periodic motion may be associated with a fixed point of the Poincar6 mapping to: 
R ~ ~ R ~ along solutions of system (1.1) for the section t = to = (mod x). This mapping is differentiable 
and its Jacobian is the monodromy matrix Y(t0, to + x). 

If system (1.1) has a discontinuous right-hand side, additional technical difficulties arise. Attention 
has been devoted [2] to the case in which the vector-valued function F(x, t) is discontinuous on a smooth 
surfacer(x, t) = 0, but both F and Fx are continuous on either side of the surface, right up to the surface 
itself. It was assumed in that study that the solution intersects the surface of discontinuity without 
tangency. It was shown that, if the initial time to does not correspond to a crossing of the surface of 
discontinuity, then the mapping tO is differentiable and its Jacobian can be constructed by "matching" 
the solutions of system (1.2) at the crossing time t' of the surface of discontinuity, according to the formula 
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where 

Y(to, t'+O)=BY(to, t'-O) (1.3) 

B = E. +((F-, gradf)+i~/at)-'(F + -F-)(grad/) r 

The superscript T denotes transposition and En is the identity matrix. 
After calculating the monodromy matrix, the stability problem is solved in exactly the same way as 

in the smooth case. 
Another type of discontinuity is characteristic for systems with impact: when the phase trajectory 

reaches the boundary of the domain of continuous motion (which is defined by one or more inequalities 
of the formf(x) ~ 0), it experiences a jump discontinuity in accordance with the formula 

x + : r + I ( r )  (1.4) 

where the minus and plus superscripts correspond to the beginning and end of the impact and I is the 
impulse. 

This type of periodic motion may be investigated by analogy with the previous case. The jump of the 
fundamental solution matrix upon impact is described by formula (1.3) with 

B = Ez. + I  x +(F- ,  grad f ) - i (F  + - F -  - l .F - ) (g rad / )  r (1.5) 

In this case, too, the Poincar6 mapping is still differentiable, despite the discontinuous nature of the 
trajectories. 

In this paper we will discuss the stability of periodic trajectories that intersect several surfaces of 
discontinuity at the same time. Problems of this kind may be encountered when investigating systems 
of variable structure [3, 4], as well as mechanical systems with several impact pairs, among which there 
are no rigid constraints [5]. 

2. V A R I A T I O N  O F  T H E  S O L U T I O N S  I N T E R S E C T I N G  S E V E R A L  
S U R F A C E S  O F  D I S C O N T I N U I T Y  

Let us assume that the right-hand side of system (1.1) has discontinuities on the surfaces 

f j ( x )  = 0 (j = l . . . . .  k) (2.1) 

All these surfaces are assumed to be smooth (that is, continuously differentiable, without singular 
points). They divide the phase space into several domains f2s, s = 1 . . . . .  r, and it is assumed that at 
points where two or more surfaces intersect their normal vectors are linearly independent. The right- 
hand side of system (1.1) is continuously differentiable in each of the closed domains D.s x R. 

Consider a solution x * ( t )  which at time t = t' intersects two surfaces, fl(x) = 0 andf2(x) = 0. We will 
assume that the intersection occur without tangency, that is, the vectors x*(t' + 0) are transverse to 
both surfaces. Let y(t) = x ( t )  - x*(t) denote the variation of the solution. We will investigate its behaviour 
near a point of discontinuity. The neighbourhood of the point is divided by the surfaces of discontinuity 
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into four parts, in each of which the function F is defined differently (Fig. 1). Let us denote the 
corresponding continuous components by F--, F -+, F +- and F ++, where the minus and plus superscripts 
indicate the half-spaces in which the unperturbed trajectory is situated before and after intersecting 
the surfaces of discontinuity. 

As is well known, the following estimates hold in regions where the right-hand side of system (1.1) 
is continuous 

y(t) - Y(t 0, t)y(t 0) + O(Jl y(t 0) 112) (2.2) 

where Y(t0, t) is a solution of system (1.2). This relationship enables us to determine the times at which 
the perturbed trajectory intersects the surfaces of discontinuity. Let ~(t') be a perturbed trajectory for 
the equations of motion with right-hand side F--, and let t' + 6:t' be the times at which the trajectory 
intersects the surfaces ~ = 0 (j = 1, 2). 

Define quantities A~.2t by the formulae 

0 -- fj (i(t' +/X/t)) = (grad fj, y(t')) + (grad f/, i*)/t/t + O(Ajt) 2 

Consequently 

,x /t = (grad f y[ . <,,), y(t'))/vj+O(nyll2), V/=-(gradf~, F--(x'(t'), t')) (2.3) 

Depending on the initial perturbation y(t0), one may have inequalities A1t < A2t or Alt> A2t. In the 
first case, the perturbed trajectory will first intersect the surface f~ = 0 and then the surface f2 = 0. If 
the inequality sign is reversed, the order of the intersections is also reversed (Fig. i). 

The jumps of the fundamental solution matrix are determined using formula (1.3). One must take 
into account the fact that the perturbed trajectory may intersect the surfaces of discontinuity either 
simultaneously or consecutively, in either order. The results may be summarized in the following 
proposition. 

Proposition 1. If x*(t) is a solution of system (1.1), which at time t = t' intersects two surfaces of 
discontinuity (2.1) of the right-hand side without tangency, then estimate (2.2) remains valid at times 
t > t', where the fundamental solution matrix experiences a discontinuity in accordance with the following 
formulae 

[B2(F +-, F++)Bt(F --,  F+-), A2t < &it 
B = ~I~(F -+, F++)B2(F --, F-+), A2I> AIr (2.4) 

t.o A2t -~ Air 

where 

B/(u, v) = E~ +(u, gradJ~)-l(v-u)(grad~) r, j = 1, 2 

Bo = Bt (F--, F ++) 

This proposition may be extended to the case in which the trajectory simultaneously intersects k/> 
3 surfaces of discontinuity: there will then be a greater number of versions in formulae (2.4). The order 
in which the perturbed trajectory intersects the surfaces of discontinuity (2.1) will depend on the 
quantities Af in formulae (2.3),j --- 1 . . . .  , k. The first surface to be intersected is that for which this 
quantity is a minimum. In order to determine which surface is intersected next, the variation of the 
right-hand sides of the system when one of the surfaces of discontinuity is intersected must be taken 
into account. Substituting this changed expression into (2.3), we can calculate the quantities A~l)t, where 
j takes all values from 1 to k except for the subscript that corresponds to the first surface intersected. 
The minimum of these subscripts A~)t indicates the subscript that corresponds to the second surface 
intersected, and so on. 

A generalization of another kind concerns systems with unilateral constraints. In such systems the 
trajectories do not intersect the surfaces (2.1), but when one of these surfaces is reached the trajectory 
experiences a discontinuity in accordance with formula (1.4). 

Note that in the general case, when impact occurs against two or more constraints, the impact impulse 
I(x-) in (2.3) is given by a discontinuous function, which indicates the instability of motions with multiple 
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impacts [5]. It is therefore worthwhile to investigate the important special case of orthogonal constraints 
[6], for which I = 11 + 12, where 11,2 are the impulses when impact occurs against each of the constraints 
separately. The orthogonality conditions in systems with several impact pairs are satisfied, in particular, 
when there are no rigid constraints among the pairs. In the case of rigid constraints, the orthogonality 
conditions cannot hold outside a set of zero measure in the space of constructive parameters. 

Combining formulae (1.5) and (2.4), we arrive at the following proposition. 

Propos i t ion  2. If x*(t) is a solution of system (1.1) which includes an impact at time t = t' against two 
surfaces (2.1), then estimate (2.2) remains valid at time t > t', where the fundamental solution matrix 
experiences a discontinuity in accordance with formulae (2.4), where 

Bj(u, v) = E,  +I : ,  +(u. g radf j ) - t (v -u- l jxu) (gradf j )  r, j = 1.2 

B o = E. +I~ +(F--, grad~)-I(F ++ -F-- - I~F--)(grad f0 r 

(2.5) 

3. CONDITIONS OF STABILITY IN THE FIRST APPROXIMATION 

Let ¢p : R ~ ~ R n be a mapping with a fixed point at the origin. Suppose smooth surfaces ~I/I(X ) = 0, 
¥2(x) = 0, . . . .  Ws(x) = 0, which have pairwise-different normals at the origin, pass through this point 
and divide the neighbourhood of the origin into domains G1, G2 . . . . .  Gr. Let us assume that q~ is 
continuously differentiable in the closure of each Gk and continuous (but not differentiable) at the origin, 
and that the following relations hold 

~01 (x),  if x E GI 
o e e  

qPr(x), if x E Gr (3.1) 
~0(x) = qp,+l(x), if yt(x) = 0 

e e e  

cp,+s (x), if ys (x)=  0 

q~k(x) = Akx + O(x2),  k = l  . . . . .  r + s  

At points of the boundary surfaces Wj(x) = 0 the mapping q~ may be discontinuous. 
The system of the first approximation is obtained by replacing the surfaces of discontinuity 

Wj(x) = 0 with their tangent planes (grad Wj(0), x) = 0 and dropping terms O(x 2) in formulae (3.1) 

"$1(x), 
o J  

~,(x), 
~(X)--'-- ' ~r÷l(X),  

c o .  

q~,+,(x), 

D 

if x ~ G  t 

if x ~ G ,  
if (grad Yt (0), x) = 0 

if (grad ¥,(0), x) = 0 

(3.2) 

~ k ( x )  = Akx,  k = l  . . . . .  r + s  

where Gtc denotes one of the domains into which the neighbourhood of the origin is divided by the 
surfaces (x, grad yk(0)) and A, are square matrices of order n. Thus, the mapping ~p~ is linear and cp-(x) 
is homogeneous (but not additive). 

Let us determine in what eases the stability of system (3.1) may be inferred from an analysis of the materials 
Ak. It would be a mistake to associate this conclusion directly with the positions of the eigenvalues of the matrices 
relative to the unit circle. 

Examples. 1. Consider the piecewise-linear mapping of the two-dimensional plane into itself defined by 

j'A+x x 2 >0 
A(x) = [A_x x 2 ~ 0  (3.3) 
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• , -= I t  °1 =o+, 0, 

The eigenvalues of each of the matrices A+ and A_ are less than one in absolute value, indicating that each of 
the matrices separately is asymptotically stable. At the same time, the product 

A+A_ =J ct2+l c~ ,+l 
has an eigenvector I* = (1, ct - ct 3 + . . . ) r  with eigenvalue L* = 1 + 2ct 2 - c~ 4 . . .  > 1. This vector I* lies in the 
half-plane x2 < 0 and the vector M* lies in the domain x2 > 0. 

Thus the mapping A is unstable. 
2. It is a little more complicated to construct an example of an unstable continuous piecewise-linear mapping 

for which each of the components is asymptotically stable. Consider (3.3) with 

, .=i  o l' A-:J ° ~'~I 
Each of these matrices A+ and A_ satisfies the conditions for asymptotic stability (the multipliers lie inside the 

unit circle). In addition, the mappings defined by them coincide on the "splicing" line x2 = 0. At the same time, 
the mapping A s has an eigenvector I* = (1, 0) 

As(I *) -- AS_A2+(I *) -- 1.026I" 

Since the eigenvalue is greater than unity, the mapping is unstable. 
3. An example of contrary interaction of matrices may be obtained by considering (3.3) with 

A+ =diag{-2; -0, I}, A_ =diag{-0, I;-2} 

In this case each of the matrices A+ and A_ is obviously unstable, but the "composite" discontinuous mapping 
A is asymptotically stable. Indeed, this mapping reverses the signs of both coordinates of any vector. Consequently, 
the elements of the sequence I, AI, A21, Arl . . . .  lie alternately in the half-planes x2 > 0 and x2 < 0 (an exception 
occurs if the initial vector lies in the planex2 = 0, in which case the powers of A leave its second component equal 
to zero, while decreasing the first component in a geometric progression with common ratio 0.1). Stability follows 
from the equality 

A+A_ =diag{0,2; 0,2} 

We now formulate a few conditions which, if satisfied in system (3.2), have implications for the stability 
of the "complete" system (3.1). 

Proposition 3. Suppose the norms of all the matrices Ak in formulae (3.2) do not exceed some number 
q e (0, 1) (in terms of some norm II x II inR~) • Then a fixed point of the mapping (3.1) is asymptotically 
stable. 

Indeed, in that case one can use Lyapunov's asymptotic stability theorem for mappings [7], defining 
the Lyapunov function to be II x II. 

Proposition 4. Suppose one of the mappings ~ .  in formula (3.2) has an eigenvector I* in the interior 
of its domain of definition Gk, with an eigenvalue p > 1. Then a fixed point of the mapping (3.1) is 
unstable. 

Proof. Consider a component q~. of the mapping (3.1). As we know [1, 8], if a system of differential 
equations has v positive characteristic values, then a v-parameter family of solutions exists asymptotic 
to a singular point as t ~ --oo. An analogous statement holds for systems with discrete time. By a suitable 
choice of the parameters, one can construct a solution of the linear system with matrix Ak. which lies 
on an invariant straight line with direction vector I*. The solution of the complete system corresponding 
to these system corresponding to these parameters will asymptotically approach the straight line more 
rapidly than it approaches the origin. Consequently, in some neighbourhood of the origin it will lie in 
Gk., i.e. it will be a solution of system (3.1). Obviously, the existence of an asymptotic trajectory implies 
instability, since one can reach an arbitrary point of that curve from as small a neighbourhood of the 
origin as desired. 
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Corollary. The conclusion as to instability remains valid if the conditions of Proposition 4 hold for 
some natural power of the mapping ~. 

Indeed, the square, cube, etc. of the matting (3.2) constitute mappings of the same type (with different 
subdivisions into domains of differentiability Gj). 

Note that if one of the mappings ~ has negative eigenvalues less than -1, or imaginary eigenvalues outside the 
unit circle, this does not necessarily imply instability (see Example 3 in this section). 

Proposition 5. Assume that, relative to some basis in R ~, the mapping (3.2) has a partitioned-triangular 
matrix 

t~. 
! Cl2 

¥(x) = C~, 

0 

• .. Clq~ 
• "" C2qlx  

... Cqq~ 

(3.4) 

where the diagonal blocks are square matrices whose elements are the same for all components ~t, 
(k --- 1 . . . . .  r + s) (the off-diagonal partitions may be different). 

Then the stability of a fixed point of the mapping (3.1) may be determined from the first approximation 
(3.4) just as in the regular case (see Section 1). 

Proof. The coefficients of the characteristic equation of the matrix (3.4) do not depend on the form 
of its off-diagonal partitions. Let us first assume that aH these partitions vanish and that ~p*(x) is a linear 
mapping with the partitioned-diagonal matrix obtained from (3.4) when C# -- 0 for all i < j. 

The mapping tp*(x) has a Lyapunov function V(x) which is a quadratic form and satisfies the following 
equation [1, 7] 

v(¢'(x))-V(x)=gV(x)-Ixl (3.5) 

If all the eigenvalues of q~*(x) are less than unity in absolute value, then the form Vis positive definite 
and Z, = 0, implying asymptotic stability of the simplified system. If there are eigenvalues outside the 
unit circle, then Z, > 0 and the function V may take negative values (instability). 

We will use the quadratic form Vto construct a Lyapunov function for the first approximation system 
(3.4). To that end we make an auxiliary change of variables x ~ x~ such that the mapping (3.4), expressed 
in terms of the new variables, will have the same diagonal partitions as the "reduced" off-diagonal 
partitions. More precisely, all the elements of the upper diagonal matrices must be made less than 
in absolute value for all versions of the definition of (3.4). 

To make this change of variables, it will suffice to choose scaling factors ~ and to put xk + lJ, xa,. 
Indeed, when all the variables corresponding to the second diagonal partition of the matrix (3.4) are 
multiplied by the same constant D, all the partitions in the second row are multiplied by D and 
simultaneously also divided by D. Consequently, the operation leaves the matrix C22 unchanged but 
divided el2 by D. We can then scale the variables corresponding to the third diagonal partitions to reduce 
the partitions C13 and C23, etc. 

We put 

Then, by (3.5) and (3.6) 

Vt(x) = V(xt) (3.6) 

It e (~(x)) - V e (x) = ~ . ~  ( x ) -  ~x t ~z (1 + O(£)) (3.7) 

For sufficiently small 6 and in a sufficiently small neighbourhood of the origin, the quadratic form V~ 
is a Lyapunov function for system (3.1), proving our assertion. 

4. INVESTIGATION OF A SYSTEM WITH TWO IMPACT PAIRS 

Let us consider a system with two interacting impact pairs of the same type 

~1 = O(Xl, ./1, t) + ~ x  I - x2, ./t - ./2), ~2 = O(x2, ./2, t) - CKxl - x2, -/l - -/2) 

xl, 2 ~ 0, O(x, ./, t + ~) ffi ¢(x, L t), G(0, 0) = 0 

( 4 .1 )  
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The impact in thejth pair (j ffi 1, 2) occurs whenxj = 0,Jj < 0 and is described by the equality 

~ = -e.f; (4.2) 

where e G (0, 1] is the Newton coefficient of restitution. 
In particular, equations like (4.1) govern the motion of two identical spheres connected by a spring 

on a vibrating two-stepped base [9]. 
If there were no interaction between the two subsystems, the terms - G in Eqs (4.1) would disappear. 

In that case the equations would also admit of solutions for whichx] -ffi x2. If one subsystem has/t-periodic 
solutions (I e N), these will be preserved in the complete system if G(0, 0) = 0. 

Let us investigate the stabil/ty of motions with one impact per period 

xl(t ) = x2(t ) = x'(t), x'(t+'c) = x'(t), x*(t') = O, Yc*(t'-O) =-V (4.3) 

where the quantityx*(t) remains strictly positive for t ¢ t' (rood x). 
We transform system (4.1) to new variables defined by 

zl,2 = (xl - x2)/2 (4.4) 

The physical meaning of these variables is as follows: zl is the average value of the gap in the impact 
pairs and z2 is a measure of the asymmetry of the two subsystems at the time in question. 

Settingyl, 2(t) = zl, z(t) -x*(t), we set up the equations in variations for the system in the variables 
(4.4) 

J;l = Ox(t)Yl +O~(t)~l, Y2 = (~Px(t)+2Gx)Y2 +(Ok(t)+ 2G~)Y2 (4.5) 

.x(t)f-~J(x*(t), 5c'(t).t). O:~(t)f-~O(x*(t), i*(t),t) Gx=~xG(O. 0), 

c ,  = c,(o, o) 

As the variables in system (4.5) are separable, it can be solved by integrating two linear second-order 
systems with periodic coefficients. The resulting fundamental solution matrix Y(t0, t) has the following 
partitioned-diagonal form in terms of the variablesyt,yl,Y2,Y2, with diagonal partitions of second order 

Y(to, t)=l¥~(o°'t) y2(Oo,,~ (4.6) 

Let us calculate the impact matrices in formulae (2.4) and (2.5). Note that in the original variables 

i l ff i  l + e  ._ l + e ( o , o , o , ~ )  - 2 (O, xl ,O,O),  I 2 = -  2 

Upon impact against one of the constraints, the initial conditions for impact against the other 
constraint remain unchanged; hence the impulses for the multiple impact are independent and the 
orthogonality conditions are satisfied. In terms of the variables zl, z~, z2, z2, we have 

F--  = (-V, O_, 0, 0) r, F** =(eV, CJ+,O,O) r 

( ~ .  l ±l+ev, i2(O+_~p_)+G±)r F±*=  - V, ~ ( ~ . + ~ _ ) ,  2 

0_ =O(0 , -V, t ' ) ,  0+ --,IJ(0, eV, t'), Gi =G(0,zI:(I+e)V) 

I=. 2 = -  l + e ( 0 , ~  ± ~ , 0 , ~ i  +i i ' )  r, grad fro.2 =(1,0,±1,0) r 
2 

(4.7) 

Calculating B from formulae (2.4), we obtain expressions in which the first, second and fourth columns 
of all three versions are the same 
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co l  ! ffi(-e,-~,0,0), co12 ffi (0, - e, 0, 0), col4 - (0, 0, 0, - e) 

The third column of B depends on the order of the impacts and is as follows: 

col 3 = ( 0 , - q . G +  , - ~ - T I _ G + , 0 ) ,  for A2t<A I 

col 3 = (0, - 1%G_, - F~ + 11_G_ , 0), fo r  A2t > A I 

col 3 = (-(1 + e), - ~, 1, 0), for A2t = Aj 

where ~ = (~+ + eO_)/V, ~± = (1 _ e)/V. 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

Note that the order of the impacts against the constraint in this problem is determined by the sign 
ofy2 at time t = t'. Upon simultaneous impacty2 = 0, and the elements in the third column of the matrix 
B0 do not affect the value of Y(t0, t' + 0). If this column is set equal to half the sum of the columns 
(4.9) and (4.10), the result is unchanged. At the same time, by (4.6), we conclude that the monodromy 
matrix satisfies the assumptions of Proposition 5 if G_ = --G+. This condition implies that the force of 
interaction between the elements of the two impact pairs of symmetric. If G-* = 0, the Poincar6 mapping 
q~ is differentiable; otherwise it is piecewise-differentiable. 

By Proposition 5, the stability conditions for the symmetric periodic motions under discussion may 
be divided into two groups. The first group corresponds to motion of one impact pair without any 
connection with the other; in that situation the monodromy matrix is the product of the matrix Yl(t0, 
to + x) and the second-order minor at the upper left corner of the impact matrix. The second group 
describes the effect on stability of a connection between the pairs, with the monodromy matrix equal 
to the product of Y2(t0, to + x) and the second-order minor at the lower fight corner of the impact matrix. 

One of the basic models of the theory of vibro-impact systems is a particle on a vibrating base [10]. 
In such a system 

O(x, k, t) = -g-~(t) 

where g is the acceleration due to gravity and h(t) is the ordinate of the supporting surface in some 
inertial system of coordinates. The conditions for the existence of a motion with one impact per period 
Ix are 

V= glx i~(t')= l-e (4.12) 
I + e' 2(I + e) gl'c 

Since Ox = Oi == 0, it is not difficult to write down a solution of system (4.5): in formula (4.6) 

*' I Y] (t', t' + i'O = (4.13) 
" • - c 2 s t  ct - / a t  

c t = exp(-k/x)cos(&/~), s t - 8 -I exp(-kK)sin(&/z), 6 -- ~ c  2 - k 2 

k =-G~(0, 0), c 2 = --O~(0, 0)/2 

The first group of stability conditions consists of the Schur inequalities for the second-order character- 
istic polynomial 

ITrCll l<1+detClj <2, C11 =BjiYl(t',t'+lx) (4.14) 

where B11 is the second-order minor in the upper left corner of the matrices (4.8). 
If conditions (4.12) are taken into consideration, inequalities (4.14) become 

2(I + e 2) 
-~e-~--g < h(t') < 0 (4.15) 

The second group of stability conditions is analogous in form to (4.14), but with the matrix Cli replaced 
by C22 = B22Y2(t', t' + I~). Performing the necessary computations, we finally obtain the following 
inequality 
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#.g,f 
I I  I l I I 
I l l n l m u  
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• "Ill ',111 
# 

! | | | I I I  

I I I I 
I I I  I 1 ~  
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~- Zsr fl  o'~- 
Fig. 2. 

[ ~ ) 2 ( l + ~ ) - ~ G + ~ t - 2 e c t l < l + e 2 e x p ( - 2 k l z )  (4.16) 

The satisfaction of both conditions (4.15) and (4.16) guarantees the motion to be asymptotically stable; 
but if the sign of at least one of these inequalities is reversed, the motion is unstable. 

In particular, suppose the motion of the base is governed by a harmonic law h( t )  = e sin cot (co = 
2n/x), the impacts are absolutely elastic, and the spring is linear (in that case the determinant of the 
matrix Cll is equal to 1 and inequalities (4.15) are necessary but not sufficient for stability). It then 
follows from the periodicity condition (4.12) that there are two types of periodic solutions: those for 
which sin cot' = I or sin tot' = -1. The second of these solutions does not satisfy inequality (4.15), and 
hence it is unstable. The stability conditions for the first motion take the form 

~ sin(8/*) 1 r < l ,  ------~-(1-1")-cos(8/x < c h ( k l x )  (4.17) 

where F = eto2/g is the intensity of the excitation. 
The domain (4.17) is shown in Fig. 2 in the plane of the parameters ~t = 5/x, X = k/x  for F = 0.05. 

The instability zones, shown hatched in the figure, have the form of "teeth" whose bases lie on the 
abscissa axis and are adjacent on their right to the points mn, m ~ N. The width and height of the teeth 
decrease as m increases. We have appealed here to the conclusion, obtained in [9], that for an ideal 
spring of small stiffness the system is stable, but as the stiffness increases it becomes unstable. 

As the parameter F increases, the instability zones become smaller in size. 
If# < 1, then, as computations have shown, the instability zones become smaller. Thus, when e = 

0.7, h( t ' ) /g  = -0.05, only one of the "teeth" remains (cross-hatched in Fig. 2). 
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